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An Analytic Model for Estimating the Length of the
Velocity Saturated Region in GaAs MESFET’s
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Abstract—An analytical model is presented for estimating the
length of the portion of a FET channel with velocity saturated car-
riers. The model is based on previous work proposed by Pucelet
al. [1], [2], and has been adapted to remove discontinuities between
extreme bias conditions. The need for complicated numerical solu-
tions has also been removed making the model suitable for use with
circuit simulators. Results obtained from the model agree well with
previously proposed models over a wide range of bias conditions
where velocity saturation can be either dominant or negligible, de-
pending on the overall channel length and bias conditions.

Index Terms—Gallium arsenide, MESFET, modeling, velocity
saturation.

I. INTRODUCTION

K NOWLEDGE of the length of the velocity saturated re-
gion (LVSR) of a FET channel aids in modeling both the

dc and noise performance of GaAs MESFET’s. For devices with
gate lengths less than 0.5m, most of the channel is velocity sat-
urated, and it is the saturation velocity that is of interest [3], [4].
Devices with gate lengths larger than this are still commonly
used, however, and the effects of velocity saturation can vary
with the biasing conditions.

Much attention has been given to modeling the LVSR in
MOSFET’s [5]–[7]. However, these works cannot be directly
applied to MESFET’s due to the fundamentally different
physical mechanisms causing current and velocity saturation
in these devices [8].

An analytic model for estimating the LVSR has been pre-
sented by Pucelet al. for the GaAs MESFET for use in a noise
model presented in the same paper [1], [2]. The derivation pre-
sented was an extension of earlier work done by van der Ziel
[9], [10] on the development of commonly known FET noise
models. Pucelet al.extended the analysis to include the effects
of the velocity saturated region by utilizing the current conti-
nuity in the channel at the point where velocity saturation oc-
curs. This model is limited in that it is not continuous over all
valid bias conditions and requires extensive boundary condition
checks. The model also lacks an explicit form for the LVSR and
requires difficult numerical solution of sensitive functions. Both
of these shortcomings make this model unsuitable for imple-
mentation in circuit simulators or for readily obtaining practical
estimates of the LVSR.
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This model has been experimentally confirmed by Folkes
[11] who pointed out that the model is not practical to imple-
ment in circuit simulators since calculation of the LVSR is too
complicated. Using a different method presented by Shur [12],
Onodipe and Guvench in more recent work rederived the same
numerical model for the LVSR as given by Pucelet al.[13]. This
model was again experimentally confirmed by Onodipe and Gu-
vench for numerous bias conditions.

In this paper, a variation of the Pucel–Statz–Haus model is
presented, which depends explicitly on the total channel length

, Shockley pinch-off potential , drain to source voltage
and the source to gate voltage , eliminating the need for

difficult numerical solutions. The model is also self limiting in
that the result is valid for all possible bias conditions and does
not need to be checked against the overall channel length,, as
the LVSR approaches.

For the model developed, the LVSR has the same functional
dependence on as a recent CMOS model developed by
Wong and Poon [5]. The LVSR dependence on the overall
channel length, however, is significantly different in these two
devices.

II. OVERVIEW OF THE PUCEL–STATZ–HAUS MODEL

In notable early work in noise analysis of MESFET’s, van
der Ziel presented a dc model based on physical principles of
the device operation [9], [10]. In this model and several other
variations proposed [14], it was assumed that the effects of the
velocity saturated region were negligible and confined to a small
fraction of the channel near the drain end.

For devices with a channel length much greater than 1m,
this assumption is generally valid for practical bias conditions.
As the channel length is decreased, the LVSR can occupy most
of the overall channel length, depending on the bias conditions,
making this assumption invalid. In a later analysis proposed by
Pucelet al. [1], [2] the original van der Ziel thermal noise anal-
ysis was modified to include noise contributions from the ve-
locity saturated region.

Straightforward manipulation of the drain current expression
given by van der Zielet al.showed that with both velocity satu-
rated and constant mobility channel sections, the dc bias condi-
tions of the FET could be characterized by six equations given
by

(1)

LVSR (2)

(3)
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LVSR (4)

(5)

(6)

where
length of constant mobility region;
channel voltage at the pinch off point;
Shockley pinch off potential; [15]
channel conductivity ;
undepleted channel depth;
constant carrier mobility;

;
overall channel length;
doping density;

-field at the pinch off point;
reverse bias Schottky junction voltage;
normalized gate referred channel potentials at
the pinch off point, source, and drain, respec-
tively.

A common set of assumptions were made in this derivation
and are briefly summarized. As shown in Fig. 1, it is assumed
that at the pinch off point , and the normalized
gate referred channel potentialis given by (5). For all

the mobility is assumed to be constant and the carrier drift
velocity increases linearly with the-field in the channel. For
all , the mobility decreases with increasing-field and
the carrier velocity is saturated at a constant value.

The above model described by (1)–(6) is valid when both re-
gions exist in the channel and (4) gives a value forbetween
0 and m. As the channel length is increased, the normalized
potential increases until (4) indicates . From this, these
equations can only be used provided a conditional check is in-
cluded to limit the value of and hence the calculated LVSR.
This can be complicated when implementing the model in a cir-
cuit simulator since an upper limit exists on bothas well as
the normalized drain potential given by (6), where cannot
exceed . When modeling components whose values must be
determined from equations in a simulator such as Libra, condi-
tional expressions are not easily included.

A lower limit also exists on , since the condition
must be maintained, where is the upper limit on given by
the smallest of either or the value of that makes as
calculated by (4). Calculation ofcan be easily done using (1)
for a given bias current, however, simulations are more conve-
niently done when is obtained from (2) and (3) using a known

and . This is more useful in dc modeling where the dc
drain current is typically the desired quantity to model.

Determining and is easily done in most simulators,
however, the LVSR cannot be found explicitly sincemust be
found from numerical solution of an extremely sensitive func-
tion in (2). If the channel potential at the pinch off point was
known, (5) could be used to calculate. This quantity must be
found from solution of the remaining five equations and serves
only to define the variable.

Fig. 1. AssumedE-field distribution in the channel.

From this, two modifications to the model must be made if it
is to be conveniently used in a circuit simulator. First, the LVSR
must be an explicit function of and eliminating the need
for numerical solution. Secondly, the final expression for the
LVSR must be self limiting, i.e., it must vary between zero and

for all bias conditions that keep the device in saturation.

III. D EVELOPMENT OFALTERNATIVE MODEL

A. Explicit Form of LVSR

In order to get the LVSR as a function of , must be
found as an explicit function of . Solving for the LVSR in
(2), substituting the resulting expression into (4) and using the
identity

(7)

a new function can be defined as

(8)

whose roots give the required value of. The dimensionless
quantity is defined as

(9)

For devices with channel lengths m and can be
considered to be provided is large enough to keep the
device in saturation. As increases, increases which slightly
lowers . However, for most practical device geome-
tries and bias conditions, the assumption is valid
and hence (8) reduces to

(10)

which must be solved for. A plot of this function over a range
of values where is shown in Fig. 2 for a wide range
of channel lengths.

The large increase in the slope of for large values oc-
curs when is small ( is low), is large ( is large) and
the overall channel length is much larger than 2m. In practical
circuits, especially microwave designs, these conditions rarely
occur. Instead submicron processes are preferred with minimal
bias voltages.

These conditions result in the LVSR occupying a large frac-
tion of the channel which causesto be slightly larger than
for a wide range of bias conditions. This makes it possible to
approximate with a local series expansion over a bounded
region just before the slope of increases rapidly, as opposed
to a global series expansion about some arbitrary point that is not
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Fig. 2. Dependence ofx(p) onp andL from the original Pucelet al.model.

easily determined if the model is to be valid for a wide range of
channel lengths.

For a small local region, a common quadratic approximation
to a function given in most numerical methods texts, (Powell
[16]) is

(11)

where is found by differentiating (10) to get

(12)

A good choice for the lower limit of the expansion interval is
clearly when . In order to choose the upper limit of the in-
terval, (4) can be solved for the point at which the entire channel
can be modeled with constant mobility or , which re-
quires solution of a cubic equation in. When the expansion is
done within these limits, the portion of with large slope is
not modeled as well, which reduces the model’s accuracy as
gets larger (corresponding to long channel lengths). This gives
an approximation to that will be valid for all practical op-
erating conditions and FET channel lengths for reasonably low

(below 2 m).
A better approximation for all channel lengths can be ob-

tained with straightforward manipulation of the original
expression in (10) and noting that the logarithmic term changes
much slower than as is increased. Rewriting (10) as

(13)

Fig. 3. Plot ofx(p) from Pucelet al.model with the approximation~x(p) asp
is varied.

will give a quadratic solution to provided a quadratic
approximation to and a linear approximation of

can be reasonably made. Using the approxima-
tion method given in (11), and can be
expanded as quadratic and linear functions given by

(14)

and

(15)

respectively, where is the upper limit on derived in Sec-
tion IV. Substituting these approximations into (13) and simpli-
fying gives a quadratic summarized in Section III-C that
can be solved to give two roots, one of which will be greater
than 1 and can be discarded.

Fig. 3 shows a plot of calculated from the Pucelet al.
model and the new approximation over a range of values
when these two approximating functions for and
are used. The solution foris found at the point where .
From the close agreement shown in Fig. 3 when and
equal zero, it is clear that a quadratic estimate of and a
linear approximation to can be reasonably made
without compromising the accuracy of the overall function .

B. Self Limiting Modifications

Limiting the LVSR expression to m LVSR m
implies has one zero in the open interval , where

is the upper limit on such that and .
Since is monotonically increasing in the interval
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Fig. 4. Ideal functionf(L) for limiting ~x(p).

the lower limit occurs when and thus must be nega-
tive for the zero to exist.

As discussed, there are two possible upper limits onfrom
which the smallest must be chosen. First, solution of the cubic
(4) when gives a value of , that would indicate no
velocity saturation within the channel. This solution can take on
any value betweenand 1 and hence must be compared toto
determine the actual upper limit .

By noting that when , and
using the identity given in (7) and the expression forfrom
(3), it is easy to show that will always be greater than and
hence . is found from (4) when and is not
bias dependent so it only needs to be calculated once for a given
device geometry, and is given as

Knowing the upper and lower limits on, several alterna-
tives are available to limit and hence the expression for
the LVSR. The overall expression for the LVSR cannot be di-
rectly truncated when it approaches the valid limits since
has no zero within the range as shown in Fig. 3
for the case when m. To guarantee a zero in the re-
quired interval implies and . This can
be accomplished with several alternatives. The most flexible is
substituting an expression for the channel length that limitsat
set boundaries and leaves it unaltered when within a valid range.
This makes the effect of the limiting function easier to see since

has a simple linear dependence onaccording to (10).
In each case, a function is required whose value is the orig-

inal argument until the argument approaches some boundary,
beyond which an asymptotic limit is reached. Such an ideal
function is shown in Fig. 4. Using the conditions and

discussed, (10) can be rearranged to give the upper
and lower limits on , and as

(16)

and

(17)

Fig. 5. LVSR predicted by Pucelet al.model and new model for differentV
conditions. WhenL = 0:5 �m and for part of theL = 0:8 �m curves the
Pucel model does not have a valid solution.

In order to position the curve of Fig. 4 as required, the func-
tion must be modified to be of the form

(18)
where is the unit step function.

C. New Model Summary

The complete explicit model for the LVSR is given as

LVSR (19)

where is the smallest root of the quadratic
whose coefficients are

and

IV. M ODEL PERFORMANCE

A. Comparison to Pucel–Statz–Haus Model

A comparison of the approximate function with
from the Pucel model is shown in Fig. 3 for several different
bias conditions. The most common measures of LVSR models
are the dependence on and . Fig. 5 shows these plots for
several bias voltages and channel lengths. The actual LVSR es-
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timates given by the Pucel model are also plotted in Fig. 5.
These plots show excellent agreement between these two func-
tions when both a velocity saturated and constant mobility re-
gion exist.

When is made m, most of the channel is velocity
saturated and . As shown in Fig. 5, the limiting func-
tion of causes to remain less than zero resulting in the
LVSR to equal as required. As shown when m

can be gradually increased until the entire channel becomes
velocity saturated. For gate lengths m essentially the
entire channel is velocity saturated when the device is biased in
saturation. The Pucelet al.model is not valid in this region and
has no solution.

Fig. 5 also shows the effects of the limiting function on the
LVSR. From this, the effect of substituting from (18) for

in is to ensure that a zero exists in the valid interval for
thus causing the LVSR to limit at when the channel length

is small and is sufficiently large to velocity saturate the en-
tire channel. Note that whenand are calculated from (3),
neither may exceed one. occurs when the entire channel
is pinched off and no current flows in the device. This does not
need to be checked within the model since it is a condition that
will be avoided in the circuit design and biasing of the device.

V. CONCLUSIONS

An analytic model to estimate the LVSR in a GaAs MESFET
has been presented. The model is continuous between condi-
tions where velocity saturation can be either dominant or neg-
ligible. The calculated LVSR is given explicitly as a function
of simple process parameters and does not require numerical
solution, thus making the model suitable for use in circuit sim-
ulators. The results obtained from the model agree well with
those obtained from more difficult numerical solution of the
Pucel–Statz–Haus model on which it is based.
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